Flow-induced shear strain in intima of porcine coronary arteries.

نویسندگان

  • Wei Zhang
  • Yi Liu
  • Ghassan S Kassab
چکیده

The in vivo circumferential strain has a small variation throughout the vascular system (aorta to arterioles). The axial strain has also been shown to be nearly the same as the circumferential strain under physiological loading. Since the endothelium is mechanically much softer than the media-adventitia in healthy arteries, the porcine intima was considered as a mechanically distinct layer from the media-adventitia in a two-layer computational model. Based on the simulation result, we hypothesize that the flow-induced shear strain in intima can be of similar value as the pressure-induced circumferential strain in healthy coronary arteries, even though the shear stress is orders of magnitude smaller than the circumferential stress. The nearly isotropic deformation (circumferential, axial, and shear strains) may have important implications for mechanical homeostasis of endothelial cells, mechanotransduction, growth, and remodeling of blood vessels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shear modulus of porcine coronary artery: contributions of media and adventitia.

The epicardial coronary arteries experience significant torsion in the axial direction due to changes in the shape of the heart during the cardiac cycle. The objective of this study was to determine the torsional mechanical properties of the coronary arteries under various circumferential and longitudinal loadings. The coronary artery was treated as a two-layer composite vessel consisting of in...

متن کامل

Longitudinal displacement and intramural shear strain of the porcine carotid artery undergo profound changes in response to catecholamines.

The effects of catecholamines on longitudinal displacements and intramural shear strain of the arterial wall are unexplored. Therefore, the common carotid artery of five anaesthetized pigs was investigated using an in-house developed noninvasive ultrasonic technique. The study protocol included intravenous infusion of low-dose epinephrine (β-adrenoceptor activation), as well as intravenous bolu...

متن کامل

Shear stress-induced vasodilation in porcine coronary conduit arteries is independent of nitric oxide release.

The present study was performed to determine the importance of nitric oxide in eliciting epicardial coronary artery dilation during sustained increases in shear stress in the absence of pulsatile flow. Isolated first-order porcine epicardial coronary conduit arteries (approximately 500 microm) were preconstricted (U-46619) and subjected to steady-state changes in flow in vitro. Nonpulsatile flo...

متن کامل

The effect of turbulence model on predicting the development and progression of coronary artery atherosclerosis

A severe case of stenosis in coronary arteries results in turbulence in the blood flow which may lead to the formation or progression of atherosclerosis. This study investigated the turbulent blood flow in a coronary artery with rigid walls, as well as 80% single and double stenoses on blood flow. A finite element-based software package, ADINA 8.8, was employed to model the blood flow. The hemo...

متن کامل

Regulation of shear stress in the canine coronary microcirculation.

BACKGROUND Physical forces, such as pressure and flow, are well known to affect vascular function in the coronary circulation. Increases in shear stress produce vasodilation in coronary arterioles in vitro, and constant-flow preparations suggest a role for shear stress-induced vasodilation during adjustments to metabolic demand in vivo. Hypothetically, the regulation of shear stress can be view...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 103 2  شماره 

صفحات  -

تاریخ انتشار 2007